Characterization of a novel dUTP-dependent activity of CTP synthetase from Saccharomyces cerevisiae.

نویسندگان

  • A Pappas
  • T S Park
  • G M Carman
چکیده

CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] from the yeast Saccharomyces cerevisiae catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In this work, we demonstrated that CTP synthetase utilized dUTP as a substrate to synthesize dCTP. The dUTP-dependent activity was linear with time and with enzyme concentration. Maximum dUTP-dependent activity was dependent on MgCl(2) (4 mM) and GTP (K(a) = 14 microM) at a pH optimum of 8.0. The apparent K(m) values for dUTP, ATP, and glutamine were 0.18, 0.25, and 0.41 mM, respectively. dUTP promoted the tetramerization of CTP synthetase, and the extent of enzyme tetramerization correlated with dUTP-dependent activity. dCTP was a poor inhibitor of dUTP-dependent activity, whereas CTP was a potent inhibitor of this activity. The enzyme catalyzed the synthesis of dCTP and CTP when dUTP and UTP were used as substrates together. CTP was the major product synthesized when dUTP and UTP were present at saturating concentrations. When dUTP and UTP were present at concentrations near their K(m) values, the synthesis of dCTP increased relative to that of CTP. The synthesis of dCTP was favored over the synthesis of CTP when UTP was present at a concentration near its K(m) value and dUTP was varied from subsaturating to saturating concentrations. These data suggested that the dUTP-dependent synthesis of dCTP by CTP synthetase activity may be physiologically relevant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleotide-dependent tetramerization of CTP synthetase from Saccharomyces cerevisiae.

The nucleotide-dependent tetramerization of purified native URA7-encoded CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) from the yeast Saccharomyces cerevisiae was characterized. CTP synthetase existed as a dimer in the absence of ATP and UTP. In the presence of saturating concentrations of ATP and UTP, the CTP synthetase protein existed as a tetramer. Increasing concentrations ...

متن کامل

Expression of Human CTP synthetase in Saccharomyces cerevisiae reveals phosphorylation by protein kinase A.

CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Delta ura8Delta mutant lacking ...

متن کامل

Phosphorylation of Human CTP Synthetase 1 by Protein Kinase C IDENTIFICATION OF Ser AND Thr AS MAJOR SITES OF PHOSPHORYLATION*

Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coliexpressed CTP synthetase 1 as a substrate, protein kinase C activity was timeand dose-dependent and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase ...

متن کامل

CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae.

CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) an...

متن کامل

Phosphorylation of human CTP synthetase 1 by protein kinase A: identification of Thr455 as a major site of phosphorylation.

CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 50  شماره 

صفحات  -

تاریخ انتشار 1999